Stokes 公式#

假设某界面上下有四束平面电磁波,介质 1 中入射与出射电磁波为 \(\vec{E}_{1}, \vec{E}_{1}^{\prime}\),介质 2 中入射与出射电磁波为 \(\vec{E}_{2}, \vec{E}_{2}^{\prime}\)

图片

\[\begin{split} \begin{array}{l} \vec{E}_{1} = \mathrm{Re}{( \vec{E}_{1} e^{ i \vec{k}_{1} \cdot \vec{r} - i \omega t } )} \\ \vec{E}_{1}^{\prime} = \mathrm{Re}{( \vec{E}_{1}^{\prime} e^{ i \vec{k}_{1}^{\prime} \cdot \vec{r} - i \omega t } )} \\ \vec{E}_{2} = \mathrm{Re}{( \vec{E}_{2} e^{ i \vec{k}_{2} \cdot \vec{r} - i \omega t } )} \\ \vec{E}_{2}^{\prime} = \mathrm{Re}{( \vec{E}_{2}^{\prime} e^{ i \vec{k}_{2}^{\prime} \cdot \vec{r} - i \omega t } )} \end{array} \end{split}\]

图片

简单起见,以下忽略 \(\mathrm{Re}\)\(\vec{E}\)。当反向传播时采用 \(\bar{E}\) 作为记号,当 \(\bar{E}_{i}^{\prime} = E_{i}\) 时,\(\bar{E}_{i} = E_{i}^{\prime}\)。界面处的振幅反射率与振幅折射率定义为

\[\begin{split} \begin{array}{l} r_{1} = \frac{E_{1}^{\prime}}{E_{1}} & E_{2} = 0 \\ t_{1} = \frac{E_{2}^{\prime}}{E_{1}} & E_{2} = 0 \\ r_{2} = \frac{E_{2}^{\prime}}{E_{2}} & E_{1} = 0 \\ t_{2} = \frac{E_{1}^{\prime}}{E_{2}} & E_{1} = 0 \end{array} \end{split}\]

如果界面上的反射与折射源于上下折射率的不同,相位偏移来源于 Maxwell 方程组,则满足

\[\begin{split} \begin{array}{l} r_{1} + r_{2} = 0 \\ r_{1}^{2} + t_{1} t_{2} = 1 \end{array} \end{split}\]

如果表示介质板的等效反射与折射系数,相位偏移源于介质板内部的光程差,则满足

\[\begin{split} \begin{array}{l} r_{1} r_{1}^{*} + t_{1}^{*} t_{2} = 1 \\ r_{1}^{*} t_{1} + r_{2} t_{1}^{*} = 0 \end{array} \end{split}\]

介质交界面处的等效系数#

以 s 光为例,Maxwell 方程组的边界条件为

图片

\[ \begin{align}\begin{aligned} \begin{array}{l}\\\begin{split}\varepsilon_{r1} \cdot 0 = \varepsilon_{r2} \cdot 0 \\\end{split}\\\begin{split}E_{1s} + E_{1s}^{\prime} = E_{2s} + E_{2s}^{\prime} \\\end{split}\\\begin{split}B_{1s} \sin \theta_{1} + B_{1s}^{\prime} \sin \theta_{1}^{\prime} = B_{2s} \sin \theta_{2} + B_{2s}^{\prime} \sin \theta_{2}^{\prime} \\\end{split}\\\begin{split}B_{1s} \cos \theta_{1} - B_{1s}^{\prime} \cos \theta_{1}^{\prime} = B_{2s} \cos \theta_{2} + B_{2s}^{\prime} \cos \theta_{2}^{\prime} \\\end{split}\\\begin{split}k_{1} E_{1} = \omega B_{1} \quad k_{1} E_{1}^{\prime} = \omega B_{1}^{\prime} \quad k_{1} = \sqrt{\varepsilon_{r1}} \frac{\omega}{c} \\\end{split}\\k_{2} E_{2} = \omega B_{2} \quad k_{2} E_{2}^{\prime} = \omega B_{2}^{\prime} \quad k_{2} = \sqrt{\varepsilon_{r2}} \frac{\omega}{c}\\\end{array} \end{aligned}\end{align} \]

图片

则考虑 \(t = 0\) 时刻空间中的电磁波,令所有的 \(k\) 反向,所有的 \(B\) 反向,则所有的 \(E\) 不变,上述方程依旧成立。注意上两张图中的 \(E_{1}\) 未必相等,而是由 Maxwell 方程组保证可能出现相等的情况。介质表面只有两个自由度(只有两束光是能任意选择大小的)。

介质板的等效系数#

介质板的相位偏移来源于内部光程,以介质薄膜为例,\(E_{2} = 0\)

图片

\[\begin{split} \begin{array}{l} E_{1}^{\prime} = E_{1} ( r + t r^{\prime} t^{\prime} e^{i \Delta \varphi} ( \sum_{j = 0}^{\infty} [ r^{\prime 2} e^{i \Delta \varphi}]^{j} ) ) \\ E_{2}^{\prime} = E_{1} ( t t^{\prime} e^{i \Delta \varphi^{\prime}} \sum_{j = 0}^{\infty} [ r^{\prime 2} e^{i \Delta \varphi}]^{j} ) \\ \end{array} \end{split}\]

则考虑 \(t = 0\) 时刻空间中的电磁波,令所有的 \(k\) 反向,所有的 \(B\) 反向,则所有的 \(E\) 不变。由于光线反向传播所有的 \(\Delta \varphi\) 反号,\(r, t, r^{\prime}, t^{\prime}\) 为实数,因此新的 \(\bar{E}_{1}, \bar{E}_{1}^{\prime}, \bar{E}_{2}, \bar{E}_{2}^{\prime}\) 满足原本 \(E_{1}^{*}, E_{1}^{\prime *}, E_{2}^{*}, E_{2}^{\prime *}\) 间的关系。

图片

构造#

假设初始只有 \(E_{1} = 1\) 入射,产生了 \(E_{1}^{\prime} = r_{1}, E_{2}^{\prime} = t_{1}\)

图片

对于两介质分界面

  1. 构造 \(\bar{E}_{1}^{\prime} = r_{1}\),产生 \(\bar{E}_{1} = r_{1}^{2}, \bar{E}_{2} = r_{1} t_{1}\)。将光线反向,振幅不变。

  2. 再构造 \(E_{2}^{\prime} = t_{1}\),类似有 \(E_{1} = t_{1} t_{2}, E_{2} = t_{1} r_{2}\)。这两种情况叠加即为初始情况。

\[\begin{split} \begin{array}{l} r_{1}^{2} + t_{1} t_{2} = 1 \\ r_{1} t_{1} + t_{1} r_{2} = 0 \end{array} \end{split}\]

图片

对于介质板的等效系数

  1. 构造 \(\bar{E}_{1}^{\prime} = r_{1}^{*}\),则出射光为 \(\bar{E}_{1} = r_{1}^{*} r_{1}, \bar{E}_{2} = r_{1}^{*} t_{1}\)。反向后为 \(E_{1}^{\prime} = r_{1}, E_{1} = r_{1} r_{1}^{*}, E_{2} = r_{1} t_{1}^{*}\)

  2. 类似构造 \(E_{2}^{\prime} = t_{1}, E_{1} = t_{1} t_{2}^{*}, E_{2} = t_{1} r_{2}^{*}\)

\[\begin{split} \begin{array}{l} r_{1} r_{1}^{*} + t_{1} t_{2}^{*} = 1 \\ r_{1} t_{1}^{*} + t_{1} r_{2}^{*} = 0 \end{array} \end{split}\]

以下命题成立#

反向的两束光线的电场矢量和磁场矢量无法同时相消。

对于介质交界面,如果允许存在 \(E_{1} e^{ i \vec{k}_{1} \cdot \vec{r} - i \omega t }, E_{1}^{\prime} e^{ i \vec{k}_{1}^{\prime} \cdot \vec{r} - i \omega t }, E_{2} e^{ i \vec{k}_{2} \cdot \vec{r} - i \omega t }, E_{2}^{\prime} e^{ i \vec{k}_{2}^{\prime} \cdot \vec{r} - i \omega t }\),则允许存在 \(E_{1} e^{ - i \vec{k}_{1} \cdot \vec{r} - i \omega t }, E_{1}^{\prime} e^{ - i \vec{k}_{1}^{\prime} \cdot \vec{r} - i \omega t }, E_{2} e^{ - i \vec{k}_{2} \cdot \vec{r} - i \omega t }, E_{2}^{\prime} e^{ - i \vec{k}_{2}^{\prime} \cdot \vec{r} - i \omega t }\)

对于介质板,如果允许存在 \(E_{1} e^{ i \vec{k}_{1} \cdot \vec{r} - i \omega t }, E_{1}^{\prime} e^{ i \vec{k}_{1}^{\prime} \cdot \vec{r} - i \omega t }, E_{2} e^{ i \vec{k}_{2} \cdot \vec{r} - i \omega t }, E_{2}^{\prime} e^{ i \vec{k}_{2}^{\prime} \cdot \vec{r} - i \omega t }\),则允许存在 \(E_{1}^{*} e^{ - i \vec{k}_{1} \cdot \vec{r} - i \omega t }, E_{1}^{\prime *} e^{ - i \vec{k}_{1}^{\prime} \cdot \vec{r} - i \omega t }, E_{2}^{*} e^{ - i \vec{k}_{2} \cdot \vec{r} - i \omega t }, E_{2}^{\prime *} e^{ - i \vec{k}_{2}^{\prime} \cdot \vec{r} - i \omega t }\)