Information and Computation Theory for
Interdiscipliners

This note compiles two well-known textbooks: Michael Sipser, Introduction to the Theory of Computation
(3e) and Thomas M. Cover & Joy A. Thomas, Elements of Information Theory (2e). No preknowledge is
required.
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1 Entropy
1.1

entropy H(X) = — > p(x)logp(x) = —Elogp(X)

zeX
joint entropy, conditional entropy H(X,Y) = H(X) + H(Y|X) note: usually
H(X|Y) # H(X]Y =)
relative entropy(KL distance) D(p||q) = — . p(m)logzgg = —Elog% usually D(pl||q) # D(q||p)
reX

mutual inforamtion I(X;Y) = D(p(z,y)|p(z)p(y))
I(X;Y)=HX)+HY)—-H(X,Y)=H(X)—- H(X|Y) I(X;X) = H(X) Venn diagram

chain rule
n

H(le"'aXn) - ZH(Xi|Xi—1a"'7X1)a I(Xl"")Xn;Y) - ZI(Xi;Y|Xi—17"'aX1)
=1 i=1

Jesen Ineq: convex func. fand aRV X, Ef(X) > f(EX)

Info. Ineq: D(pl|q) > 0, eq.iff p=q I(X;Y) >0, eq. iff X id. ¥
H(X) <log|X| H(X1,--+,X,) <> H(X;)
i=1

log-sum Ineq: 7", a; log 3= > (37, ai)log %ijl D(p||q) is convex about (p, q) and H(p) is

concave about p.

Markov chain X — Y — Z, I(X; Z|Y) = 0 Data Processing Ineq:
I(X;Y) > I(X; Z), eq. iff I(X;Y|Z) =0

0 — X — T(X) sufficient statistics I(0; X) = I(6; T(X)) or X id. 6 when T'(X) is given
minimal suf. stat. § — T'(X) — U(X) — X

. XY =X, P.=Pr(X+#X), H = —P.logP. — (1 — P.)log(1 — P.),
ano Ineq: .
H(X|Y) < H(X|X) < H. + P.H(X) < H, + P.log| X|
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X ~p(x), Y ~q(y), Pr(X=Y) > 9—H(p)—D(pllq)
1.2

(weak)LLN, asymptotic equipartition property AEP:

zzd p

typical set A® C X™ large n, Pr(A?) > 1 —¢, (1 —€)2"HX)=9) < |A7| < 27HX)F9) (1n short,
A? has roughly 2"H elements with equal prob. 27 )

Nearly nH bits can express sequence X ".(typical setn(H + €) + 1 bit and nontypical nlog|X| + 1
bit)
In the sense of first-order exponent, among all sets that have Pr > 1 — e, A? is the minimal.

stationary stochastic process, stationary Markov chain

entropy rate of a sto. {X;}: H(X) = lim L H(Xy,---, X,,)(if limit exists)
n—oo

for stn. sto. also = lim H(X,|X,_1,--,X1) proof: Stolz-Cesaro Means Th.

n—oo

for stn. MC of trans. mx P and stn. dis. y = Pu, H(X) = H(X3|X1) = — > piPijlogP;;
ij

Second law of thermodynamics: as time n T,
D(/“l’nHl‘l’:L) 1, esp. D(N'rzH:“’)?
if stn. dis. is uni.(equal a priori prob. principle) H(X,,) T;
for stn. MC H(X,|X1) 1;
operator(e.g. shuffling) T'id. X, H(TX) > H(X)

stn. MC {Xn}, YZ = (ﬁ(Xl), H(;V) = lim H(Yn|Yn_1, o -,Yl) = lim H(Yn|Yn_1, . -,Yl,Xl)
n—00

n—00

Shannon-McMillan-Breiman(general AEP) Th: H is the entropy rate of a finite ergodic sto. X,
—%logp(Xo, o Xno) Y% H proof Sandwich Th.
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differential entropy h(X) = — fS z)logf(z)dx (S is the support set of RV X))
joint diff. ent., conditional diff. ent., relative ent., Ml, AEP are in the same way.
example: (N (1, X)) = 2 + +log(2m)"
h(aX) = h(X) + log|a|, h(AX) = h(X) + log|det A|

I(X15X2) = —5log(1 — p)

Among all dis. with = EX X", Gauss dis. has max ent. h(X) < +log(2me)™|Z| proof:
D(f||N) >0, [ flogN = [ NlogN

estimation error (if have side info. Y) E(X — X)Q > L g2h(X]Y)

2me
Similarly, A? = {z € §™: —Llogp(z) — h(X)| < €}. While in discrete case we use cardinal

|A"| = 2"H in continuous case we use volume V(A") = 2™ (like a cube with side length 2").

relation with discrete ent: dis. p(x) is Riemann integrable, X is partitioned as x4 by intervals with
length A, then iim0 H(X?) + logA = h(X). Thus a n bit quantized cont. RV X has a ent. of
_>

h(X) + n.
more: several ineq. about det can be derived thru ent. of a multivar ndis. e.g. Hadamard ineq:

. . . D
[[%i > |2| > [] o} where o7 is the cond. variance of X; given other X, or o2 = Ll
(2 (2

‘ nfl‘

1.4



Maximun entropy dis./prin./estimation
max h(f)st. f(x) >0, [qf(z)dz =1, [qf(z)ri(z)de=a;

f*(z)=e = —55— proof: Lagrange; Info ineq.
gel T

)\0+Z )\ln(m) Z )\ri(z)

_z
M

example: Boltzmann dis. S = [0, +0), EX = u, f(z) = %e

S = (—00,+), EX = a;, EX? = as, f(z) = N(ai,az — a?) but when we have third
moment constraint, Ag needs to be 0 to aviod fj;o f = oo, and therefore this method may be out of
work. However we can add some carefully devised perturbation onto the original A to get whatever
a3 while holding a1 and awa. Thus sup h(f) = h(N (a1, @z — a3)) = 11n2me(as — a?), the max
ent. is only e-reachable.

diff. ent. rate h(X) = lim L1h(Xy,---,X,) T Jim h(X,| X" 1)

n—00 n—00

for Gauss stno. h(X) = %log27re + ﬁ [T _logS(\)d\, o2, = 21?22h(best em. error given inf.

history)
AR model, autocorrelation func. R(k) = EX; X, power spectral density PSD S(\) = F(R(k))
p order Gaussian-Markov autoreg. sto.
p
jid.
Xi=Y a;Xij+Zi, Zi = N(0,0%)
Burg Th: ' ]z_; Y o ’
attains the max ent. rate among all sto. satisfying the conditions
EX; Xk =01 <k<p,Vi
P
arR(m — k) + 0%6m0,1 <m <p
-1

a;, o can be solved from Yule-Walker equations: R(m) =
k

2 Coding, Statistics and Investment

2.1
source coding C : X — D*, l(z) = |C(z)|, L(C) = El(X) (alphabetD = {1,...,D —1})
nonsigular O uniquely decodable O instantaneous/prefix

Kraft ineq: for inst. code on D, code word length Iy, ..., > Dli<1 proof: all code words' son sets

(2
disjoint.

optimal code Hp(X) < L < Hp(X) + 1, eq. iff. D~ = p; D-adic dis. proof: Shannon coding by
Lagrange

Shannon coding: I; = ﬂogpil (to prove the upper bound)

for stno. {X,,}, L — H(X) Shannon First Th (Noiseless Coding Th: H(X) < L < H(X) + +

for wrong code(using g(z)), the length will increased by D(p||q)

Acc. all uni. decodable codes satisfy Kraft ineq.(McMillian ineq.) so they are no better than prefix codes.

Huffman coding C'g is optimal. Shannon-Fano-Elias coding

Shannon coding is competitive optimal Pr(l(X) > I'(X) 4 ¢) < 5
(refer to 5.5 for Kolmogorov complexity)
2.2

prob. simplex P type P, on X, type class T'(P) = {z € X" : P, = P}, P € P"
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1P < (n+ )X 2.Qn(z) = 2 "PPIQ+HP) 3 |T(P)| = 27H(P) 4. Qn(T(P)) = 2-"P(PIQ)
(@ ={z1,..., 2.}, Xi & Q(2))
seq. typical set T¢ = {z : D(P,[|Q) < €}, Pr(T2") — 1, D(P,|Q) =5 0

subset E C P, Q"(E) < (n+1)¥27P" D* = min D(P||Q);
(S
Large deviation theory Sanov Th: 1
if F is the closure of its interior, — —logQ"(E) — D*
n

> Agi(@)
if constraints E = {P : Y P(z)g;(z) > a;}, we can get P*(z) = % using Lagrange.
z > Qe
zeX

jointly typical set

1 1
A ={(z",y") € X" x Y" : ‘—glogp(w”) - H(X)‘ <, —glogp(y") —H(Y)| <e¢

€

1
-~ logp(a"y") - HOX,Y)| < e}, Pr(4D) -1
n
(X, Y") ~ p(z™)p(y™), Pr((X",Y™) € A?) — 27 (XY) proof: Sanov Th.

closed convexset EC P, Q ¢ E, P* = argrlgligD(PHQ), VP € E, D(P||Q) > D(P||P*) + D(P*||Q)
€

- » '
Conditional Limit Th: seq. X™ 4" Q, n — oo, Pr(X; = z|Px» € E) — P*(z) (i.e. type P*
represents the whole set) proof: D(P; || Py) > ﬁ |P1 — P||% D's convergence implies L ; norm's
convergence. (Taylor: D(Py||P2) = %x?gl p, T4

Hypo test X; iid: Q(z), Hy : Q = Py, Hy : Q = P,, Neyman-Pearson Lem: likelihood ratio ' > 0,

P n
a0 = (e T 7y, ot = Pp(Ag(T)), B = P(ALT)),
acceptance region 5 (x™)

other regions with a < o™ must have g > 8*

Pi(X™)
Py(X™)

D(P||Ps)(also D(P||Py)) using Lagrange and get P, =

> T equals to D(Pxx||Py) — D(Px+ | Py) > L1ogT, under this constraint we minimize
P () Py (z)
> P(z)P; *(2)

zeX

a, = 27"PIRIR) g = 2-nD(PAIP) () can be determined by D(Px || Ps) — D(Pxn|p,) = +logT
)

to estimate

P
fa

—

relative ent. AEP: Xq,---, X, o Py(z), VPy(x), — %log% LY D(P || P,)

relative ent. typical set Py (A™(Py||Py)) > 1 — €, Py(A™(P1||Py)) — 2 "P(B1lP2)

Chernoff-Stein Lem:
n—oo

A, CX,a,<e

when Bayesian weighted D* = min lim —%log(man + m25), Chernoff Info.
n M—00

C(P1, P,) = D* = D(P\||Py) = D(Py||P2) or C(Py, Py) = — min log(3 PP(z) P (2))

. . T . P (X
(note: D* is not related to 71, 7w since large sample will eliminate a priori knowledge Z—; P;EXT%
n

0
~T)



Score func. V = %ln f(X;6), EV = 0 Fisher Info. J(§) = EV? = —E-2- &

sor 1 f(X;0)
Jn(6) = nJ(8)

Cramer-Rao Ineq: unbiased stat. T'(X) of 8, X(T) > J () (for multivar. it means mx & — J !

semipositive.)(Similarly, for biased stat. we have br(6) = ET — 6, E(T — 6)? > % + b3 (9) )

proof: Cauchy-Schwarz Ineq. for V.— EV and T — ET.

some senses: for para. dis. family {po(z)}, 6 — 6", D(psllpy) ~ @; de Bruijin Ineq.

Zid. X, Z~N(0,1), 2h(X +VtZ) = 3 J(X + VtZ), if limit exists, Zh(X + VtZ)|,_, = +J(X)
(h's base is e); Just like ent. power 2nH(X) can be seemed as the volume of typical set, Fisher info.

a
J(X) can be seemed as the surface area, where J(X) = f %dm; Fisher info's convolution ineq.

1 1 1
XY = 7% T Tm

ent. powe,r Ineq: X id. Y, dim X = dimY = n, 27X+Y) > 93h(X) 4 9Th(Y) o
R(X+Y) > h(X +Y"), where X',Y' ~ N, X'id. Y', h(X') = h(X), (Y’):h(Y)

23
Kelly game b* = p Gambling conservation Th: W* + H = logm (for uniform fair oppo. game)
estimation of entropy of English (Shannon letter guessing game)
m
potfolioB={be R™:b; >0,> b; =1} X ~ F(z), S=b'X
i=1
first and second moment method: Sharpe-Markowitz theory, CAPM

growth rate W(b, F) = [logSdF = Elogb'X S,, = H S;, LlogS, Sw, s, = omW

=1

log optimal porfolio W*(F) = max W (b, F)

W (b, F') is concave about b, linear about F, and W*(F) is convex about F.

b*'s KT condition: E(ZX) < 1, E( =1ifb; >0,<1ifb =0

b*’X b*’X)
causal portfolio b; : R+( B log optimal is the best. ElogS,; = nW™* > ElogS,,

Side info. raises growth rate. AW = fy fly)AWy—, <I(X;Y)

W2 = lim WXy, X,) = lim W n-1
1y° yAp) = 1IN (Xn|X )

n—00 n—00

g* is a supermartingale, v, EV <, Pr(sup SZ >t) < %

universal portfolio:

- i bSi(b,2)du(d) & ; n n
buia(2) = SEREEEE 8, (27) = [ Su(b,2")dpu(b)

3 Communication

3.1

discrete channel (X, p(y|z),)) DMC n-th extension p(yx|z*, v* 1) = p(yx|z1), non-feedback

p(z|z" 1, y* 1) = p(zilz*), thus p(y* (™) = TTp(yil2:)
1
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(M, n) code of channel: message indexset W € W = {1, ..., M}, coding func. X" : W — X™ and
codebook C = {z"(1),...,2"(M)}, decoding func.g : Y — W

W—X"(W)—=Y" W

conditional, maximum, average prob. of error
A = 2 p(y" 2" (0)1(9(y") # 4), A = max Xy, PP = A
yn

rate R =

% bit/trans. achievable raten — oo, A — 0

channel capacity C' = m(a§< IX;y)0<C= m(aic H(Y) — H(Y|X) < min(log|X|,log|Y|)

plz plx
note: we use max not sup here since I(X;Y) is a concave func. on convex set of p(z) and several algo.
can compute this maximum.

direct understanding: For each typical seq. X ™ there are roughly QnH(Y|X) seq. of Y™ corresponding
to it, and the total number of Y™ (typical) is onH(Y) 5o nearly onI(X;Y) disjointed image sets of diff.

inputs X™ can be seperated in one transmission. (or think of jointly typical Pr = 27™)
example: BSCC' = 1 — H(p), BECC = 1 — o symmetric channel

Channel Coding Th (Shannon Second Th):
DMC, VR < C, 3(2"% n) code, A — 0; Conversely, V(2"%,n) code with A — 0 must has R < C

proof: randomly generated codebook, jointly typical decoding, so error comes from either not jointly typical
Y™ or other possible inputs that are jointly typical with: Pr(V™ # V™) = Pr((X™(i),Y™) ¢ A™)+
Y Pr((X™(j),Y™) € AL, for converse th, Fano ineq. and Data-processing ineq. lead to

JF

nR = H(W""%") <1+ P"nR + nC. (strong converse edition:
R<C,P!—0,R>C, P!’ =1

note: equality needs 1. coding X™ (W) and decoding W are sufficient(all diff.); 2. Y; id.; 3. X;'s dis. is
p*(x).

Hamming code, error-detecting code minimum weight and minimun distance parity check mx.
H(c+ e;) = He; systematic code (n, k, d)

e.g. Hamming r(H) =1, n =2' — 1, k= 2! — 1 — 1, d = 3 block code and convolutional code
more: BCH code, LDPC code, turbo code.

feedback code z; (W, Yifl), feedback capacity Crg = C (feedback can simplify coding but cannot
enlarge capacity of DMC.)

Source-Channel Seperation Th: (Pr(V™ # V") = 3 p(v™) Ay)

{V"} satisfies AEP (ergodic stno.), H(V) < C, 3 source-channel code, Pr(V"™ # V™) — 0, vice versa

Thus two-step way is equally efficient. First we do data compressing (from AEP): nearly all prob. isin a

2"H and we can use R > H code to express this info. source with little error.

seq. set with size
Second we do data transmitting (from Joint AEP): for large grouping length n, nearly all inputs and
outputs are jointly typical with 2l prob. of exception, and we can use R < max I = C' code to keep
error prob. low. This Th. H < C combines the two, telling that we can devise source code(exprssing

efficiently) and channel code(confronting noise) seperatedly.
3.2

Gaussian channel Y; = X; + Z;, Z; ~ N (0, N) power constraint % > xf <P
i

- YY) =41 P
¢= f(w)I:I}EaX}ggpI(X’ Y) = 2 log(1 + N) bit/trans.



proof:
EY?=P+ N, I(X;Y)=h(Y) - h(Z), whenY ~ N(0,P + N) i.e. X ~ N (0, P) max

Similarly, code (2", n) with R < C'is achievable. (Each decoding ball's radius is v/n.N and outputs'
v/ n(P + N), so the number of disjointed balls is no more than ( P+N) 7))

finite bandwidth W' Nyquist-Shannon Sampling Th: signal f(¢) with maximum cut-off freq. W can be
completely determined by sampling seq. of ﬁ s time interval. Thus it can be seemed as a vec. in
2WT dof/dim space.

bandwidth W, noise psd &, noise power NoW (spherical ndis. with covarmx &I) AWGN channel
C = Wlog(1 + NW) bit/s (Shannon Formula) W — oo, C'= W - SNR = 3 nat/s

parallel Gaussian channel 3> EX? < P, C = max I(X*; Y*) max power allocation:
P, =(v—N;)", Y(v— N;)* = P (water-filling)

correlated noise (memory channel can also convert to this)

%tr(ZX) < P, C,, = max ilog Zx 27 5150 sloved by water filling onto X 7's eigen values ;.

22|
Ch =~ Zlog(1+ ) Z()\ Ai)t =nP
more: for stno, covarmx is Toeplitz mx, when n. — oo the envelop of its eigenvalues approaches the
power spectral N (f) of this stno. ; feedback Gaussian channel C), pg = max %log |z§+z\ , X™is
' tr(Zx)<nP " z]

no longer id. with Z™ and X = BZ + V miximizes. Cy, pp < min(C,, + %, 2C,,) is only slightly
higher than C,,.
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reproduction/code point X(X) Dirichlet partition Lloyd algo.

distortion measure d(x, ) Hamming distortion, squared error distortion

(2", n) rate distortion code (R, D) achievable li_>m Ed(X", go(fn(X™)) <D

rator. func. R(D) = 1nf achi.R = (m1§1 I(X; X) (Shannon Third Th. R > R(Dy) < D < Dy)
Z|x):D

example: (Ham. distortion, R(D) = 0 at other large D) B(p) source:

R(D) = H(p) — H(D), 0 < D < min(p,1 — p); N'(0,0?) source:

R(D) = %log%, 0 < D < o2 (similarly, ball of radius v/nD filling in ball of radius v'no?, the

number of codewords equals to Z"R(D)); parallel(multindis.) source:

R(D) =)’ %log%’i, D; =min(\,0?), Y D; = D (i.e. anti-waterfilling on the spectral)

1

n
Similarly, for combined source and channel coding, D = + Z d(V;, V;) can be achieved iff
C > R(D).

more: rator. is achi. when grouping length n is enough.(so put them together to describe will have less
distortion than considering seperatedly) distortion typical set, strong typical set Blahut-Arimoto algo.
for computing rator func.

universal source code: 3(2"%, n) code, V source Q with H(Q) < R, P — 0
more: minimax redundancy, Lemple-Ziv(LZ) coding

multiaccess channel, broadcast channel, relay channel, interference channel



multiaccess: example: binary addition and multiplication channel capacity region R € Ci.e. convex hull
of
R(S) = Y R;, X(8) = {X, :€ S}, VS C {1,...,m}, R(S) < I(X(S);Y|X(S°)) < P" — 0
€S
onion-peeling at corner points
PP
for Gausssion, denote C(z) = $log(1 + ), 3. R; < C(“5~); total code-rate C(ZE) will
icS
approach infty when m — oo but mean of each sender will approach 0. CDMA(the polyline), FDMA
and TDMA(the curve)

for source coding, Slepian-Wolf Th: V.S C {1,...,m}, R(S) > H(X(S)|X(S¢)) & P} — 0

Ry k

L) B "
P+ N N
digest: Shannon's three theorems. 1. non-distortion/lossless length-variable source-coding:

(unidecodable) R > H (L is rate R) 2. noisy channel-coding: R < C' (AWGN C' = Blog(1 + %)) 3.
fidelity-criteria/lossy source-coding: R > R(D)

4 Automaton and Language

4.1

computation model finite automation FDA

transition function d : @ x ¥ — @, accept state, languge L(M) = A

regular language regular operation: union U, concatenation o, star *
nondeterministic e NFAJ : @ x ¥, — P(Q)

NFA=DFA

REG's closure under regular operation

regular expression REX: R =a € Y oreor Jor Ry URyor Ry o Ry or R}
token, lexical analyzer

GNFA (like contraction) § : (Q — {qacc}) X (Q — {qacc}) @ R

equivalence: a language is regular iff it can be expressed by regex. proof: construction in closure; GNFA
irregular lang. example: A = {0"1"|n > 0}

lang.A € REG, dp, V string s with a length of no less than p, s = xyz and:

Pumping Lem: . .
1.Vi >0, zy'z€ A 2.y >0 3.zy| <p

4.2

parser, context-free grammar, context-free language CFL
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parse tree leftmost derivation ambiguous, inherently ambig.
Chomsky normal form: A — BC'or A — a (or § — €)
pushdown automaton PDA stack 6 : Q@ x X x I'c — P(Q x T'¢)

equivalence: a language is context-free iff it can be recognized by a PDA. proof: sign symbol $, nondeter.
substitution and comparison; Ay, for string that brings PDA from state p and empty stack to q and empty
stack — Apy Argor — aA,sb

REG C CFL

...8 = uvryz and:
CFL's Pumping Lem: ) o
1.Vi >0, w'zy'z€ A 2. vyl >0 3.lvzy| <p

more: DPDA, DCFL leftmost reduction, valid string, handle, forced handle, DCFG

more: dotted rule DK-test almost(end sign lang.) equivalence of DCFG and DPDA LR(k) grammar

5 Computability

5.1

Turing machine, configuration L(M)

Turing-recognizable, decidable

variants and robustness: multitape TM, nondeterministic TM, enumerator recursive enumerable
algorithm, Hilbert's problem, Church-Turing Thesis

description of TM

5.2

decidable problem(language): A, E, EQ for DFA(REX), CFG except EQcrg

REG Cc CFL C DECI C RE

universal TM Ay is undecidable. proof: contradiction, Cantor diagonal method

The set of all TM { (M) } is countable but the set of all lang. £ is uncountable, thus 3 lang. A ¢ RE.
A, A€ RE= Ac DECI Apy ¢ RE

5.3

reduction undeci: HALTry;, Erye, REGra, EQras proof: reduct to Aray etc.

Rice Th: P is a non-trivial property, L, = {(M)|L(M) € P} is undeci. (not all TM descriptions
belong to set P and L(M;) = L(M,), (M,) € Piff (My) € P.)

computation history LBA Arpa is deci. but Erp4 is undeci.
more: ALLcpg, PCP

computable function mapping(many-one) reducibility:
3 computable func. f: ¥* - X", Vw, we A& f(w)e B A<, B

If A is undeci/unre then B is undeci/unre; if B is deci/re then A is deci/re.
A<, B= A<, B example: Aty < EQri
5.4

SELF machine that obtains its own description
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Recursion Th:
TisaTM of func. t : ¥* x ¥* — ¥*, 3TMR of func. r : ¥* — ¥*, Vw, r(w) = t((R),w)

minimal description of TM MINry fixed point 3F, f((F)) = F
mathematical logic: model, formula D sentence D theory

Th(N, +) is deci. proof: NDA recursion Th(N, +, x) is undeci.

oracle TM T4 is much stronger but there still be some lang. it can not deci.
A decidable relative to B Turing reducible A <7 B example: Ery; <7 A1y
5.5

minimal description of string d(x), descriptive(Kolmogorov) complexity K () = min |(M, w)| where

z is on the tape when M halts on the input w (or K(z) = LI{I(n;a l(p))
pU(p)=x

K (z) is uncomputable. Godel incompleteness theorem, Berry paradox
K(zy) < K(x) + K(y) + O(logK (z)) but can not reach K(z) + K(y) + O(1).
V desc. lang. A, Jea, Vo, K(z) < K4(z) +ca

{z € {0,1}* : K(x) < k}| < 2% forinteger n, K(n) < log*n + c

v, 3> 27U < 1(byKraftineq.) sto.{X"} s f(z), TEK(X"|n) — H(X) (by source
p:U(p)halts

coding th.)

K(z"[n)

more: c-compressible There always exists incompressible string of any length.( lim = 1) There
n—00

exists a constant b for Vi, d(z) is incompressible by b.

universal prob. Py(z) = Y. 27UP) V computer A, 3cy, Yz, Py(z) > caPa(x)

pU(p)==
equivalence: e, Vz, \log#(w) —K(z)| <c
ChaitinQ = Y 27)

p:U(p)halts

more: Kolmogorov structure function, Kol. minimal sufficient statistics

6 Complexity

6.1

big O notation, small O notation

Unlike compuability, complexity depends on the computing model.
time complexity TIM E(f(n)) note: TIME(O(nlogn)) C REG

P = |JTIME(n*) PATH, REL_PRIME, CFL
k

verifier, certificate NP = |J NTIME(n*) = P_.VERI C EXPTIME HAM_PATH, COMPOSITES,
k

CLIQUE

?
P = NP NP-complete SAT
polynomial time computable function, polynomial time reduction A <p B

more: cnf formula, 3SAT(is NPc)


af://n221

Cook-Levin Th: SAT is NPc. proof: tableau, window ¢ceii A\ @start N Pmove /N Paccept

6.2

space complexity SPACE(f(n))

SPACE(f(n)) c TIME(2°U™)) c SPACE(20(/()

Savitch Th: Vf : N — R*, where f(n) > n(acc. logn), NSPACE(f(n)) C SPACE(f*(n))
PSPACE = NPSPACE O NP

PSPACE-complete PSAPCE-hard TQBF, FORMULA_GAME

bitape TM L = SPACE(logn) _ NL

log space transducer, log space reduction A <; B

PATH is NLc, NL = coNL C P

6.3

space constructible(f(n) > O(logn)), time constructible(f(n) > O(nlogn))

Hierarchy Th:
V constructible f : N — N, Jlang. A4,

decidable in space O(f(n)) but not o(f(n)); in time O(f(n)) but not o(f(n)/logn)
NL C PSPACE, PSAPCE C EXPSPACE, P C EXPTIME
more: EXPSPACE-complete circuit complexity

advanced topics: approx. algorithm, probabilistic TM (BPP), prime, alternating TM, IP=PSPACE, parallel
RAM (NCQ), cryptography(private-key cryptosystem, pulic-key cryptosystem RSA)

family picture:

TeeF
ExP
PsF = #5P 4
W
P
NL=caNL
BT,

SAT PATH
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